Sample Question Paper CLASS: XII

Session: 2021-22

Mathematics (Code-041)
Term - 1

Time Allowed: 90 minutes Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SECTION - A

In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage.

1.	$\sin\left[\frac{\pi}{3}-\sin^{-1}\left(-\frac{1}{2}\right)\right] \text{ is equal to:}$	1
	a) $\frac{1}{2}$ b) $\frac{1}{3}$	
	c) -1 d) 1	
2.	The value of k (k < 0) for which the function f defined as $f(x) = \begin{cases} \frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$ is continuous at $x = 0$ is:	1
	a) ± 1 b) -1 c) $\pm \frac{1}{2}$ d) $\frac{1}{2}$	
3.	If A = $[a_{ij}]$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, & when \ i \neq j \\ 0, & when \ i = j \end{cases}$, then A ² is:	1
	a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ b) $\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix}$	
	c) $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$ d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
4.	Value of k , for which $A = \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix is:	1
	a) 4 b) -4 c) ±4 d) 0	

	Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is strictly increasing:		
	a) (-∞, 2) ∪ (2, ∞)	b) (2, ∞)	
	c) $(-\infty,2)$	d) (-∞, 2]∪ (2, ∞)	
6.	Given that A is a square matrix equal to:	of order 3 and A = - 4, then adj A is	1
	a) -4	b) 4	
	c) -16	d) 16	
7.		s defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. pair in R shall be removed to make it an	1
	a) (1, 1)	b) (1, 2)	
0	c) (2, 2)	d) (3, 3)	4
8.	$ \left[$	d) (3, 3) B, then value of a + b - c + 2d is:	1
	a) 8	b) 10	
	c) 4	d) -8	
9.	The point at which the normal to	. 1	1
	the line $3x - 4y - 7 = 0$ is:	o the curve $y = x + \frac{1}{x}$, $x > 0$ is perpendicular to	1
	the line $3x - 4y - 7 = 0$ is:	~	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$	b) (±2, 5/2) d) (1/2, 5/2)	-
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is eq	b) (±2, 5/2) d) (1/2, 5/2) ual to:	1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$	b) (±2, 5/2) d) (1/2, 5/2)	1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is eq	b) (±2, 5/2) d) (1/2, 5/2) ual to:	1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A =	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to:	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], the set A = 10 is a multiple of 4.	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $x \in Z : 0 \le x \le 12$, given by $R = \{(a, b) : a - b $ he equivalence class containing 1, is:	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A =	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $x \in Z : 0 \le x \le 12$, given by $R = \{(a, b) : a - b $	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], t	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $x \in Z : 0 \le x \le 12$, given by $R = \{(a, b) : a - b $ he equivalence class containing 1, is:	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], t	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $x \in Z : 0 \le x \le 12$, given by $R = \{(a, b) : a - b $ he equivalence class containing 1, is:	1
11.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$ c) ϕ	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $x \in Z : 0 \le x \le 12$, given by $R = \{(a, b) : a - b $ he equivalence class containing 1, is:	1
11.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$ c) ϕ	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ ual to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $x \in Z : 0 \le x \le 12$, given by $x = \{(a, b) : a - b $ he equivalence class containing 1, is:	1

13.	of order 3×n and m×5 respectively, then the	1	
	a) 3x5	b) 5×3	
	a) 3x5 c) 3x3	d) 5×5	
	o) one	a, one	
14.	If $y = 5 \cos x - 3 \sin x$, then $\frac{d^2y}{dx^2}$ is	s equal to:	1
	a) - y	b) y	
	c) 25y	d) 9y	
15.	For matrix A = $\begin{bmatrix} 2 & 5 \\ -11 & 7 \end{bmatrix}$, $(adjA)'$ a) $\begin{bmatrix} -2 & -5 \\ 11 & -7 \end{bmatrix}$	is equal to:	1
	a) $\begin{bmatrix} -2 & -5 \\ 11 & -7 \end{bmatrix}$	b) $\begin{bmatrix} 7 & 5 \\ 11 & 2 \end{bmatrix}$	
	c) $\begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$	d) $\begin{bmatrix} 7 & -5 \\ 11 & 2 \end{bmatrix}$	
16.	The points on the curve $\frac{x^2}{9} + \frac{y^2}{16} =$ axis are:	= 1 at which the tangents are parallel to y-	1
	a) (0,±4)	b) (±4,0)	
47	c) (± 3.0)	d) $(0, \pm 3)$	4
17.	_	matrix of order 3×3 and $ A =-7$, then the enotes the cofactor of element a_{ij} is:	1
	a) 7	b) -7	
	c) 0	d) 49	
18.	If $y = \log(\cos e^x)$, then $\frac{dy}{dx}$ is:		1
	a) $\cos e^{x-1}$	b) $e^{-x}\cos e^x$	
	c) $e^x \sin e^x$	d) $-e^x \tan e^x$	
19.	Based on the given shaded region which point(s) is the objective full	on as the feasible region in the graph, at notion $Z = 3x + 9y$ maximum?	1
	Y Y		
	25 D(0,20) 15-A C(15,15)		
	(0,10) 5 B(5,5) (6) X' 20 35 50	0,0) $X + 3y = 60$	
	$(10,0) \begin{array}{c} x \\ x + y = 10 \end{array}$	x + 3y = 00	
	a) Point B	b) Point C	
	c) Point D	d) every point on the line segment CD	

20.	The least value of the function $f(x) = 2\cos x + x$ in the closed interval $\left[0, \frac{\pi}{2}\right]$ is:		
	a) 2 c) $\frac{\pi}{2}$	b) $\frac{\pi}{6} + \sqrt{3}$ d) The least value does not exist.	
	SECTION In this section, attempt any 16 questi Each Question is of 1	ons out of the Questions 21 - 40.	
21.	The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x) =$	x^3 is:	1
	a) One-on but not onto c) Neither one-one nor onto	b) Not one-one but onto d) One-one and onto	
22.	If $x = a \sec \theta$, $y = b \tan \theta$, then $\frac{d^2y}{dx^2}$ at $\theta =$	$=\frac{\pi}{6}$ is:	1
	a) $\frac{-3\sqrt{3}b}{a^2}$ c) $\frac{-3\sqrt{3}b}{a}$	b) $\frac{-2\sqrt{3}b}{a}$ d) $\frac{-b}{3\sqrt{3}a^2}$	
	$C) {a}$	$u) \frac{1}{3\sqrt{3}a^2}$	
23.	shaded. The objective ful at: (0, 8) (6, 8) (6, 5) (7) (8) (8) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (5) (6) (6) (6) (6) (7) (8) (9) (1) (1) (1) (1) (2) (1) (2) (3) (4) (4) (5) (5) (6) (6) (6) (6) (7) (8) (9) (1) (1) (1) (1) (2) (1) (2) (3) (4) (4) (5) (6) (6) (6) (6) (7) (8) (9) (9) (1) (1) (1) (1) (1) (1	oh, the feasible region for a LPP is notion $Z = 2x - 3y$, will be minimum $6, 8)$	1
24.	The derivative of $\sin^{-1}(2x\sqrt{1-x^2})$ w.r.t s	6, 5) sin ⁻¹ x, $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$, is:	1
	a) 2 b) $\frac{\pi}{2} - 2$ c) $\frac{\pi}{2}$ d) -2		
25.	If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$	then:	1
		$A^{-1} = 6B$ $B^{-1} = \frac{1}{6}A$	

a) Strictly increasing in $(-\infty, -2)$ and strictly decreasing in $(-2, \infty)$ b) Strictly decreasing in $(-2, 3)$ c) Strictly decreasing in $(-\infty, 3)$ and strictly increasing in $(3, \infty)$ d) Strictly decreasing in $(-\infty, -2) \cup (3, \infty)$ 27. Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right)$, $\pi < x < \frac{3\pi}{2}$ is: a) $\frac{\pi}{4} - \frac{x}{2}$ b) $\frac{3\pi}{2} - \frac{x}{2}$ c) $-\frac{x}{2}$ d) $\pi - \frac{x}{2}$ 28. Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is: a) $\frac{4}{c}$ b) $\frac{3}{2}$ c) $\frac{4}{c}$ d) $\frac{3}{2}$ c) $\frac{3}{2}$ d) $\frac{3}{2}$ c) $\frac{3}{2}$ d) $\frac{3}{2}$ c) $\frac{3}{2}$ d) \frac	a) Strictly increasing in $(-\infty, -2)$ a	and strictly decreasing in $(-2, \infty)$	
c) Strictly decreasing in $(-\infty, 3)$ and strictly increasing in $(3, \infty)$ d) Strictly decreasing in $(-\infty, -2) \cup (3, \infty)$ 27. Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right)$, $\pi < x < \frac{3\pi}{2}$ is: a) $\frac{\pi}{4} - \frac{x}{2}$ b) $\frac{3\pi}{2} - \frac{x}{2}$ c) $-\frac{x}{2}$ d) $\pi - \frac{x}{2}$ 28. Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is: a) $\frac{4}{3} + \frac{1}{3} + 1$			
27. Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right)$, $\pi < x < \frac{3\pi}{2}$ is: 1 28. Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is: 29. The value of b for which the function $f(x) = x + \cos x + b$ is strictly decreasing over R is: 29. The value of b for which the function $f(x) = x + \cos x + b$ is strictly decreasing over R is: 29. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then: 20. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then: 20. The point(s), at which the function $f(x) = x + \cos x + b = x + \cos x + b = x +$	b) Strictly decreasing in (-2,3)		
27. Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right)$, $\pi < x < \frac{3\pi}{2}$ is: 1 28. Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is: 28. Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is: 29. The value of b for which the function $f(x) = x + \cos x + b$ is strictly decreasing over R is: 29. The value of b for which the function $f(x) = x + \cos x + b$ is strictly decreasing over R is: 29. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then: 20. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then: 20. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then: 21. The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \\ -1, x \ge 0 \end{cases}$ is continuous, is/are: 23. The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \\ -1, x \ge 0 \end{cases}$	c) Strictly decreasing in (-∞, 3) an	nd strictly increasing in (3, ∞)	
28. Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is: a) $\frac{\pi}{4} - \frac{x}{2}$ b) $\frac{3\pi}{2} - \frac{x}{2}$ c) $-\frac{x}{2}$ d) $\pi - \frac{x}{2}$ 28. Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is: a) 4 b) 8 c) 64 d) 16 29. The value of b for which the function $f(x) = x + cosx + b$ is strictly decreasing over \mathbf{R} is: a) $b < 1$ b) No value of b exists c) $b \le 1$ d) $b \ge 1$ 30. Let R be the relation in the set N given by $\mathbf{R} = \{(a, b) : a = b - 2, b > 6\}$, then: a) $(2,4) \in \mathbf{R}$ b) $(3,8) \in \mathbf{R}$ c) $(6,8) \in \mathbf{R}$ d) $(8,7) \in \mathbf{R}$ 31. The point(s), at which the function f given by $f(x) = \{\frac{x}{ x }, x < 0 - 1, x \ge 0\}$ is continuous, is/are: a) $x \in \mathbf{R}$ b) $x \in \mathbf{R}$ b) $x \in \mathbf{R}$	d) Strictly decreasing in $(-\infty, -2)$	U (3,∞)	
28. Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is: a) 4 b) 8 c) 64 d) 16 29. The value of b for which the function $f(x) = x + cosx + b$ is strictly decreasing over R is: a) $b < 1$ b) No value of b exists c) $b \le 1$ d) $b \ge 1$ 30. Let R be the relation in the set N given by $b \ge 1$ 1 30. Let R be the relation in the set N given by $b \ge 1$ 1 31. The point(s), at which the function $b \ge 1$ 1 The point(s), at which the function $b \ge 1$ 1 31. The point(s), at which the function $b \ge 1$ 1 is continuous, is/are: a) $a \ge 1$ 1 b) $a \ge 1$ 1 is continuous, is/are:	27. Simplest form of $tan^{-1} \left(\frac{\sqrt{1+cosx} + \sqrt{1-cosx}}{\sqrt{1+cosx} - \sqrt{1-cosx}} \right)$,	$\pi, \pi < x < \frac{3\pi}{2}$ is:	1
28. Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is: a) 4 b) 8 c) 64 d) 16 29. The value of b for which the function $f(x) = x + cosx + b$ is strictly decreasing over R is: a) $b < 1$ b) No value of b exists c) $b \le 1$ d) $b \ge 1$ 30. Let R be the relation in the set R given by $R = \{(a, b) : a = b - 2, b > 6\}$, then: a) $(2,4) \in R$ b) $(3,8) \in R$ c) $(6,8) \in R$ d) $(8,7) \in R$ 31. The point(s), at which the function R given by $R = \{(a, b) : a = b - 2, b > 6\}$, then: a) $(a,b) \in R$ 1 1 is continuous, is/are: a) $(a,b) \in R$ 1	a) $\frac{\pi}{4} - \frac{x}{2}$	b) $\frac{3\pi}{2} - \frac{x}{2}$	
of $ 2A $ is: a) 4 b) 8 c) 64 d) 16 29. The value of b for which the function $f(x) = x + cosx + b$ is strictly decreasing over R is: a) $b < 1$ b) No value of b exists c) $b \le 1$ d) $b \ge 1$ 30. Let R be the relation in the set R given by $R = \{(a, b) : a = b - 2, b > 6\}$, then: a) $(2,4) \in R$ b) $(3,8) \in R$ c) $(6,8) \in R$ d) $(8,7) \in R$ 1 31. The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \\ -1, x \ge 0 \end{cases}$ is continuous, is/are: a) $x \in R$ b) $x = 0$	c) $-\frac{x}{2}$	d) $\pi - \frac{x}{2}$	
of $ 2A $ is: a) 4 b) 8 c) 64 d) 16 29. The value of b for which the function $f(x) = x + cosx + b$ is strictly decreasing over \mathbf{R} is: a) $b < 1$ b) No value of b exists c) $b \le 1$ d) $b \ge 1$ 30. Let \mathbf{R} be the relation in the set \mathbf{N} given by $\mathbf{R} = \{(a, b) : a = b - 2, b > 6\}$, then: a) $(2,4) \in \mathbf{R}$ b) $(3,8) \in \mathbf{R}$ c) $(6,8) \in \mathbf{R}$ d) $(8,7) \in \mathbf{R}$ 31. The point(\mathbf{s}), at which the function \mathbf{f} given by $\mathbf{f}(x) = \begin{cases} \frac{x}{ x }, x < 0 \\ -1, x \ge 0 \end{cases}$ is continuous, is/are: a) $x \in \mathbf{R}$ b) $x = 0$			
29. The value of b for which the function $f(x) = x + cosx + b$ is strictly decreasing over \mathbf{R} is: a) $b < 1$ b) No value of b exists c) $b \le 1$ 30. Let \mathbf{R} be the relation in the set \mathbf{N} given by $\mathbf{R} = \{(a, b) : a = b - 2, b > 6\}$, then: a) $(2,4) \in \mathbf{R}$ b) $(3,8) \in \mathbf{R}$ c) $(6,8) \in \mathbf{R}$ d) $(8,7) \in \mathbf{R}$ is continuous, is/are: a) $x \in \mathbf{R}$ b) $x = 0$	_	order 3 such that $A^2 = 2A$, then value	1
29. The value of b for which the function $f(x) = x + cosx + b$ is strictly decreasing over \mathbb{R} is: a) $b < 1$ b) No value of b exists c) $b \le 1$ 30. Let \mathbb{R} be the relation in the set \mathbb{N} given by $\mathbb{R} = \{(a, b) : a = b - 2, b > 6\}$, then: a) $(2,4) \in \mathbb{R}$ b) $(3,8) \in \mathbb{R}$ c) $(6,8) \in \mathbb{R}$ d) $(8,7) \in \mathbb{R}$ 1 The point(s), at which the function \mathbb{R} given by \mathbb{R} and \mathbb{R} b) \mathbb{R} is continuous, is/are: a) $x \in \mathbb{R}$ b) $x = 0$,	,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c) 64	d) 16	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 The value of <i>h</i> for which the function <i>f</i> ((x) = x + cos x + h is strictly	1
30. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then: a) $(2,4) \in R$ b) $(3,8) \in R$ c) $(6,8) \in R$ d) $(8,7) \in R$ The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \\ -1, x \ge 0 \end{cases}$ is continuous, is/are: a) $x \in R$ b) $x = 0$	decreasing over R is:		•
30. Let R be the relation in the set N given by R = {(a, b) : a = b - 2, b > 6}, then: a) $(2,4) \in \mathbb{R}$ b) $(3,8) \in \mathbb{R}$ c) $(6,8) \in \mathbb{R}$ d) $(8,7) \in \mathbb{R}$ 31. The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \\ -1, x \ge 0 \end{cases}$ is continuous, is/are: a) $x \in \mathbb{R}$ b) $x = 0$,	,	
31. The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \\ -1, x \ge 0 \end{cases}$ is continuous, is/are:	(C) D ≤ 1	u) b ≥ 1	
31. The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \\ -1, x \ge 0 \end{cases}$ is continuous, is/are:	30. Let R be the relation in the set N given	by $R = \{(a, b) : a = b - 2, b > 6\}$, then:	1
The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \\ -1, x \ge 0 \end{cases}$ is continuous, is/are: a) $x \in \mathbb{R}$ b) $x = 0$, , ,		
is continuous, is/are: a) $x \in \mathbb{R}$ b) $x = 0$	c) (6,8) ∈ R	d) (8,7) ∈ R	
is continuous, is/are: a) $x \in \mathbb{R}$ b) $x = 0$	31. The point(s) at which the function figure	en by $f(x) = \begin{cases} \frac{x}{ x }, x < 0 \end{cases}$	1
		$(-1, x \ge 0)$	
c) $x \in \mathbb{R} - \{0\}$ d) $x = -1$ and 1	a) $x \in \mathbb{R}$	b) $x = 0$	
	c) $x \in \mathbb{R} - \{0\}$	d) $x = -1$ and 1	
32. If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k , a and b respectively	32. If $A = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 0 & 3a \end{bmatrix}$, then	n the values of k . a and b respectively	1
are: $13 -41$ and $12b -241$, which are taken a respectively		.,	

	a) -6, -12, -18	b) -6, -4, -9	
	c) -6, 4, 9	d) -6, 12, 18	
33.	A linear programming problem is as follows:	lows:	1
	Minimize Z = 30x + 50y		
	subject to the constraints,		
	$3x + 5y \ge 15$		
	$2x + 3y \le 18$		
	$x \ge 0, y \ge 0$		
	In the feasible region, the minimum val	ue of Z occurs at	
	a) a unique point b)	no point	
	c) infinitely many points d)	two points only	
34.	The area of a trapezium is defined by for	unction f and given by $f(x) = (10 +$	1
01.	$(x)\sqrt{100-x^2}$, then the area when it is m		•
	$x/\sqrt{100-x^2}$, then the area when it is in	iaximised is.	
	a) 75 <i>cm</i> ²	b) $7\sqrt{3}cm^2$	
	c) $75\sqrt{3}cm^2$	b) $7\sqrt{3}cm^2$ d) $5cm^2$	
	<i>c)</i> 73 y 3 cm	d) Sent	
35.	If A is square matrix such that $A^2 = A$, the square matrix such that $A^2 = A$, the square $A^2 = A$ is the square $A^2 = A$.	hen (I + A) ³ – 7 A is equal to:	1
	a) A	b) I + A	
200	c) I – A	d) I	4
36.	If $tan^{-1} x = y$, then:		1
	a) $-1 < y < 1$	b) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$	
	c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$	d) y $\epsilon\{\frac{-\pi}{2}, \frac{\pi}{2}\}$	
	c) 2 \ y \ 2	α, y ε _{ξ 2} , ₂ }	
37.	Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let	$f = \{(1, 4), (2, 5), (3, 6)\}$ be a function	1
	from A to B. Based on the given information, f is best defined as:		
	a) Surjective function	b) Injective function	
00	c) Bijective function	d) function	4
38.	For A = $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then 14A ⁻¹ is given by	<i>'</i> :	1
	- 1 23		
	a) $14\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$	b) $\begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}$	
	a) 14 [1 3]	b) [2 6]	
	r2 11	r 2 11	
	c) $2\begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$	d) $2\begin{bmatrix} -3 & -1 \\ 1 & -2 \end{bmatrix}$	
	-1 5-	- 1 2-	
39.	The point(s) on the curve $y = x^3 - 11x$	+ 5 at which the tangent is $y = x - 11$	1
	is/are:		
	a) (240)	(2 0)	
	a) (-2,19) b)	(2, -9) (2, 10) and (2, 0)	
40.	$\begin{array}{c ccccc} & c) & (\pm 2, 19) & & & d) \\ \hline & & [\alpha & \beta \] & & & \end{array}$	(-2, 19) and (2, -9)	1
+∪.	Given that $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ and $A^2 = 3I$, the	en:	ı
	r,		
J.		l l	J.

	a) $1 + \alpha^2 + \beta \gamma = 0$ c) $3 - \alpha^2 - \beta \gamma = 0$	b) $1 - \alpha^2 - \beta \gamma = 0$ d) $3 + \alpha^2 + \beta \gamma = 0$
	SE In this section Each question	ECTION – C , attempt any 8 questions. n is of 1-mark weightage. d are based on a Case-Study.
41.	the feasible region determined b	a + by, where $a, b > 0$; the corner points of by a set of constraints (linear inequalities) are $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where $a, b > 0$; the corner points of $a + by$, where a, by and $a + by$, where a, by and $a + by$ are $a + by$ and $a + by$ and $a + by$ are $a + by$ and $a + by$ are $a + by$ and $a + by$ are $a + by$ and $a + by$ and $a + by$ are $a + by$ and $a + by$ and $a + by$ are $a + by$ and $a + by$ are $a + by$ and $a + by$ and $a + by$ are $a + by$ and $a + by$ and $a + by$ are $a + by$ and $a + by$ and $a + by$ are $a + by$ and $a + by$ and $a + by$ are $a + by$ and $a + by$ and $a + by$ are $a + by$ and $a + by$ and $a + by$ ar
	a) $b - 3a = 0$ c) $a + 2b = 0$	b) $a = 3b$ d) $2a - b = 0$
42.	For which value of m is the line y	y = mx + 1 a tangent to the curve y ² = 4x? 1
	2	b) 1 d) 3
43.	The maximum value of $[x(x-1)]$	$(1) + 1]^{\frac{1}{3}}, 0 \le x \le 1 \text{ is:}$
	c) 1	(a) $\frac{1}{2}$ (b) $\frac{1}{3}$
44.	In a linear programming problem and y are $x - 3y \ge 0, y \ge 0, 0 \le 0$	n, the constraints on the decision variables x $x \le 3$. The feasible region
	a) is not in the first quadrant c) is unbounded in the first quadrant	b) is bounded in the first quadrant d) does not exist
45.	$\begin{bmatrix} 1 & \sin\alpha & 1 \end{bmatrix}$	where $0 \le \alpha \le 2\pi$, then:
	a) A =0 c) A ε(2,4)	b) A ε(2,∞) d) A ε[2,4]
		CASE STUDY The fuel cost per hour for running a train is proportional
	WP4 . 22,000	to the square of the speed it generates in km per hour. If
	at surface Description	the fuel costs ₹ 48 per hour at speed 16 km per hour
		and the fixed charges to run the train amount to ₹
	Assume the speed of the train as	1200 per hour.

Assume the speed of the train as $v \, \mathrm{km/h.}$

	Based on the given information,	answer the following questions.	
46.	Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:		
	a) $\frac{16}{3}$ c) 3	b) 1/2	
	c) 3	b) $\frac{1}{3}$ d) $\frac{3}{16}$	
47.	If the train has travelled a distant the train is given by function:	ce of 500km, then the total cost of running	1
	a) $\frac{15}{16}v + \frac{6000000}{v}$	b) $\frac{375}{4}v + \frac{600000}{v}$	
	c) $\frac{5}{16}v^2 + \frac{150000}{v}$	d) $\frac{3}{16}v + \frac{6000}{v}$	
48.	The most economical speed to re	un the train is:	1
	a) 18km/h	b) 5km/h	
	c) 80km/h	d) 40km/h	
49.	The fuel cost for the train to trave	el 500km at the most economical speed is:	1
	a) ₹3750	b) ₹750	
	c) ₹7500	d) ₹75000	
50.	The total cost of the train to trave	el 500km at the most economical speed is:	1
	a) ₹3750	b) ₹75000	
	c) ₹7500	d) ₹15000	

Marking Scheme

Mathematics (Term-I)

Class-XII (Code-041)

Correct Option	Hints / Solutions
d	$\sin\left(\frac{\pi}{3} - \left(\frac{-\pi}{6}\right)\right) = \sin\left(\frac{\pi}{2}\right) = 1$
b	$\frac{\lim_{x \to o} \left(\frac{1 - \cos kx}{x \sin x} \right) = \frac{1}{2}$
	$\Rightarrow \frac{\lim}{x \to o} \left(\frac{2\sin^2 \frac{kx}{2}}{x\sin x} \right) = \frac{1}{2}$
	$\Rightarrow \frac{\lim}{x \to o} 2\left(\frac{k}{2}\right)^2 \left(\frac{\sin\frac{kx}{2}}{\frac{kx}{2}}\right)^2 \left(\frac{x}{\sin x}\right) = \frac{1}{2}$
	$\Rightarrow k^2 = 1 \Rightarrow k = \pm 1 \text{ but } k < 0 \Rightarrow k = -1$
a	$A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
С	As A is singular matrix $\Rightarrow A = 0$
	' '
b	$\Rightarrow 2k^2 - 32 = 0 \Rightarrow k = \pm 4$ $f(x) = x^2 - 4x + 6$
	$f'(x) = 2x - 4$ $let f'(x) = 0 \Rightarrow x = 2$
	$ tet f(x) = 0 \Rightarrow x = 2$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	as $f'(x) > 0 \forall x \in (2, \infty)$
	$\Rightarrow f(x)$ is Strictly increasing in $(2, \infty)$
a	as $ adj A = A ^{n-1}$, where n is order of the square matrix $A = (-4)^2 = 16$
b	(1,2)
а	$2a + b = 4 a - 2b = -3 5c - d = 11 4c + 3d = 24$ } $\Rightarrow a = 1 b = 2 c = 3 d = 2d$
	4
	$\therefore a + b - c + 2d = 8$
а	$ \therefore a + b - c + 2d = 8 $ $ f(x) = x + \frac{1}{x}, x > 0 \Rightarrow f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}, x > 0 $
	As normal to the curve $y = f(x)$ at some point (x, y) is \bot to given line
	$\Rightarrow \left(\frac{x^2}{1-x^2}\right) \times \frac{3}{4} = -1 (m_1. m_2 = -1)$
	$\Rightarrow x^2 = 4 \Rightarrow x = \pm 2$
	But $x > 0$, $\therefore x = 2$
	Therefore point= $\left(2, \frac{5}{2}\right)$
d	$sin(tan^{-1}x) = sin\{sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)\} = \frac{x}{\sqrt{1+x^2}}$
а	{1,5,9}
С	$e^{x} + e^{y} = e^{x+y}$ $\Rightarrow e^{-y} + e^{-x} = 1$
	Differentiating w.r.t. x:
	d d c b a a

		$\Rightarrow -e^{-y}\frac{dy}{dx} - e^{-x} = 0 \Rightarrow \frac{dy}{dx} = -e^{y-x}$
13	b	3 × 5
14	а	$y = 5\cos x - 3\sin x \Rightarrow \frac{dy}{dx} = -5\sin x - 3\cos x$
		$\Rightarrow \frac{d^2y}{dx^2} = -5\cos x + 3\sin x = -y$
15		ux
15	С	$adj A = \begin{bmatrix} 7 & -5 \\ 11 & 2 \end{bmatrix} \Rightarrow (adjA)' = \begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$
16	С	$\frac{x^2}{9} + \frac{y^2}{16} = 1 \Rightarrow \frac{2x}{9} + \frac{2y}{16} \frac{dy}{dx} = 0$
		$\Rightarrow slope of normal at any point (x, y) to the curve = \frac{-dx}{dy} = \frac{9y}{16x}$
		As tangent to the curve at the point (x, y) is parallel to y -axis
		$\Rightarrow \frac{9y}{16x} = 0 \Rightarrow y = 0 \text{ and } x = \pm 3$
17	b	
		$\therefore \sum_{i=1}^{3} a_{i2} A_{i2} = a_{12} A_{12} + a_{22} A_{22} + a_{32} A_{32} = A = -7$
18	d	$y = log (cos e^x)$
		Differentiating w.r.t. x :
		$\frac{dy}{dx} = \frac{1}{\cos(e^x)} \cdot (-\sin e^x) \cdot e^x \text{(chain rule)}$
		$\Rightarrow \frac{dy}{dx} = -e^x \tan e^x$
19	d	Z is maximum 180 at points C (15,15) and D(0, 20).
		⇒ Z is maximum at every point on the line segment CD
20	С	$f(x) = 2\cos x + x , x \in \left[0, \frac{\pi}{2}\right]$
		$f'(x) = -2\sin x + 1$
		$Let f'(x) = 0 \Rightarrow x = \frac{\pi}{6} \in [0, \frac{\pi}{2}]$
		f(0) = 2
		$f\left(\frac{\pi}{6}\right) = \frac{\pi}{6} + \sqrt{3}$
		$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$ \Rightarrow least value of $f(x)$ is $\frac{\pi}{2}$ at $x = \frac{\pi}{2}$
		Section-B
21	d	let $f(x_1)$ Let $y \in R(codomain)$. Then for any $x, f(x) = y$
		$= f(x_2) \text{ such that } x_1 x_2 \in R \text{if } x^3 = y$
		$\Rightarrow x_1^3 = x_2^3$ $i.e., x = y^{\frac{1}{3}} \in R(domain)$
		$\Rightarrow x_1 = x_2$ $\Rightarrow f$ is one - one i.e., every element $y \in R(codomain)$ has a pre
		image $y_{\overline{3}}$ in R (domain)
		$\Rightarrow f$ is onto
		$\therefore f$ is one-one and onto
22	а	$x = a \sec \theta \Rightarrow \frac{dx}{d\theta} = a \sec \theta \tan \theta$
		$y = b \tan \theta \Rightarrow \frac{dy}{d\theta} = b \sec^2 \theta$
		$\therefore \frac{dy}{dx} = \frac{b}{a} cosec\theta$
		$\Rightarrow \frac{d^2y}{dx^2} = \frac{-b}{a} \csc\theta \cdot \cot\theta \cdot \frac{d\theta}{dx} = \frac{-b}{a^2} \cot^3\theta$
		$\left \therefore \frac{d^2 y}{dx^2} \right _{\theta = \frac{\pi}{a}} = \frac{-3\sqrt{3}b}{a^2}$
23	•	Z is minimum -24 at (0, 8)
24	c a	$let u = sin^{-1}(2x\sqrt{1-x^2})$
	u	$\int \operatorname{tet} u - \operatorname{Stit} \left(2x \operatorname{V} 1 - x^{-} \right)$

		and $v = \sin^{-1}x$, $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$		
		1 12 12		
		$\Rightarrow \sin v = x \dots (1)$ Using (1), we get:		
		$=\sin^{-1}(2\sin v \cos v) = \sin^{-1}(\sin 2v)$		
		$\Rightarrow u = 2v, -\frac{\pi}{2} < 2v < \frac{\pi}{2}$		
		2 2		
0.5		Differentiating u with respect to v, we get: $\frac{du}{dv} = 2$		
25	d	$AB = 6I \Rightarrow B^{-1} = \frac{1}{6}A$		
26	b	$f'(x) = 6(x^2 - x - 6) = 6(x - 3)(x + 2)$		
		As $f'(x) < 0 \forall x \in (-2,3)$		
27	а	$\Rightarrow f(x)$ is strictly decreasing in $(-2,3)$		
21	а	$tan^{-1}\left(\frac{\sqrt{1+cosx}+\sqrt{1-cosx}}{\sqrt{1+cosx}-\sqrt{1-cosx}}\right)$		
		$= tan^{-1} \left(\frac{-\sqrt{2}cos\frac{x}{2} + \sqrt{2}sin\frac{x}{2}}{-\sqrt{2}cos\frac{x}{2} - \sqrt{2}sin\frac{x}{2}} \right) , \pi < x < \frac{3\pi}{2} \Rightarrow \frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4}$		
		2 2 2 7		
		$= tan^{-1} \left(\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} \right) = tan^{-1} \left(\frac{1 - tan \frac{x}{2}}{1 + tan \frac{x}{2}} \right) = tan^{-1} \left(tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right)$		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$= \frac{\pi}{4} - \frac{x}{2}, -\frac{\pi}{4} > \frac{\pi}{4} - \frac{x}{2} > -\frac{\pi}{2}$ $A^{2} = 2A$		
28	С			
		$\Rightarrow A^2 = 2A $		
		$\Rightarrow A ^2 = 2^3 A $ as $ kA = k^n A $ for a square matrix of order n		
		$\Rightarrow \text{ either } A = 0 \text{ or } A = 8$		
		But A is non-singular matrix		
29	b	$ \therefore A = 8^2 = 64 $ $ f'(x) = 1 - \sin x \Rightarrow f'(x) \ge 0 \forall x \in \mathbb{R} $		
	~	$ \begin{cases} f(x) = 1 - \sin x \Rightarrow f(x) \ge 0 & \forall x \in \mathbb{R} \\ \Rightarrow \text{no value of } b \text{ exists} \end{cases} $		
30	С	a = b - 2 and $b > 6$		
	_			
31	а	$\Rightarrow (6,8) \in R$ $f(x) = \{\frac{x}{-x} = -1, x < 0 -1, x \ge 0$		
		$\Rightarrow f(x) = -1 \ \forall \ x \in R$		
		$\Rightarrow f(x)$ is continous $\forall x \in R$ as it is a constant function		
32	b	$kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$		
		$\begin{vmatrix} 13\kappa & -4\kappa \end{bmatrix} \begin{vmatrix} 12b & 24J \\ \Rightarrow k = -6, a = -4 \text{ and } b = -9 \end{vmatrix}$		
33		$\Rightarrow k = -6, a = -4 \text{ and } b = -9$ Corner points of feasible region $Z = 30x + 50y$		
	С	(5,0) 150		
		(9,0) 270		
		(0,3) 150		
		(0,6) 300 Minimum value of 7 occurs at infinitely many points		
34	С	Minimum value of Z occurs at infinitely many points $C(C_{1}) = -2x^{2}-10x+100$		
		$f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}}$		
		$f'(x) = 0 \Rightarrow x = -10 \text{ or } 5$, But $x > 0 \Rightarrow x = 5$		
		$f''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^{\frac{3}{2}}} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0$		
		$\Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} cm^2 \text{ when } x = 5$		
35	d	$(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$		
36	C	$\frac{1}{2} < y < \frac{\pi}{2}$		

37	b	Since, distinct elements of A have distinct f-images in B. Hence, f is injective and every element of B does not have its pre-image in A, hence f is not surjective.
		\therefore f is injective and is not surjective.
38	b	surjective.
		$\therefore 14A^{-1} = 14 \times \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}$
39	b	$y = x^3 - 11x + 5 \Rightarrow \frac{dy}{dx} = 3x^2 - 11$
		Slope of line $y = x - 11$ is $1 \Rightarrow 3x^2 - 11 = 1 \Rightarrow x = \pm 2$ \therefore point is (2, -9) as (-2, 19) does not satisfy the equation of the given line
40	С	$A^2 = 3I$
		$\Rightarrow \begin{bmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \beta \gamma + \alpha^2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \Rightarrow 3 - \alpha^2 - \beta \gamma = 0$
		Section C
41	а	As Z is maximum at (30, 30) and (0, 40)
		$\Rightarrow 30a + 30b = 40b \Rightarrow b - 3a = 0$ $y = mx + 1 \dots (1) \text{and} y^2 = 4x \dots (2)$
42	b	
		Substituting (1) in (2): $(mx + 1)^2 = 4x$ $\Rightarrow m^2x^2 + (2m - 4)x + 1 = 0 \dots (3)$
		As line is tangent to the curve
		⇒ line touches the curve at only one point
		$\Rightarrow (2m-4)^2 - 4m^2 = 0 \Rightarrow m = 1$
43	С	Let $f(x) = [x(x-1) + 1]^{\frac{1}{3}}, 0 \le x \le 1$ $f'(x) = \frac{2x-1}{3(x^2-x+1)^{\frac{2}{3}}} \text{let } f'(x) = 0 \Rightarrow x = \frac{1}{2} \in [0,1]$
		$f'(x) = \frac{2x-1}{2}$ let $f'(x) = 0 \implies x = \frac{1}{2} \in [0,1]$
		$3(x^2-x+1)^{\frac{1}{3}}$
		$f(o) = 1, f\left(\frac{1}{2}\right) = \left(\frac{3}{4}\right)^{\frac{1}{3}}$ and $f(1) = 1$
		$\therefore \text{ Maximum value of } f(x) \text{ is 1}$
44	b	Feasible region is bounded in the first quadrant
45	d	$ A = 2 + 2\sin^2\alpha$
		$As -1 \le \sin\alpha \le 1, \forall 0 \le \alpha \le 2\pi$
46	d	$\Rightarrow 2 \le 2 + 2sin^2\alpha \le 4 \Rightarrow A \in [2,4]$ Fuel cost per hour = $k(speed)^2$
70	l u	$\Rightarrow 48 = k. 16^2 \Rightarrow k = \frac{3}{16}$
47	b	
71	D	Total cost of running train (let C) = $\frac{3}{16}v^2t + 1200t$
		Distance covered = $500 \text{km} \Rightarrow time = \frac{500}{v} hrs$
		Total cost of running train 500 km= $\frac{3}{16}v^2(\frac{500}{v}) + 1200(\frac{500}{v})$
		$\Rightarrow C = \frac{375}{4}v + \frac{600000}{v}$ $\frac{dC}{dv} = \frac{375}{4} - \frac{600000}{v^2}$
48	С	$\frac{dC}{dC} = \frac{375}{4} - \frac{600000}{600000}$
		$\det \frac{dv}{dv} = 0 \Rightarrow v = 80 \ km/h$
40		Let $\frac{dv}{dv} = 0 \rightarrow v = 00 \text{ km/n}$
49	С	Fuel cost for running 500 km $\frac{375}{4}v = \frac{375}{4} \times 80 = Rs.7500/-$ Total cost for running 500 km $= \frac{375}{4}v + \frac{600000}{v}$
50	d	Total cost for running 500 km = $\frac{375}{4}v + \frac{600000}{v}$
		$=\frac{375\times80}{4}+\frac{600000}{80}=Rs.15000/-$
	I	1 4 8U